

Engineers Without Borders (EWB) Research Triangle Professional (RTP) Chapter:

Chipozo Alta Verapaz Guatemala Water Supply Project Bruce Binney
President, EWB RTP
(619)200-0916
bruce.binney@gmail.com
ewb.usa.rtp@gmail.com

http://ewb-usa.org
http://rtpewb.com
https://support.ewb-usa.org/waterforchipozo

Objectives of this brief

- Introduce Engineers Without Borders (EWB)
 - EWB Mission, Core Values and Impact
 - Our professional chapter in Raleigh NC
- Describe the EWB RTP water supply improvement project in the community of Caserio Chipozo in Alta Verapaz, Guatemala
 - <u>Objective</u>: Improve water supply for 95 families (615 people) who are without dependable clean water

EWB USA

Building a Better World

Vision

EWB-USA's vision is a world in which every community has the capacity to sustainably meet their basic human needs.

Mission

EWB USA builds a better world through engineering projects that empower communities to meet their basic human needs and equip leaders to solve the world's most pressing challenges.

We are Impactful

651 Projects Underway

384

PROJECTS

AGRICULTURE

STRUCTURES

ENERGY PROJECTS

INFORMATION SYSTEM

Engineers Without Borders USA is a 501c(3) tax-exempt organization

Core Values

SERVICE FIRST

EWB-USA commits to harnessing the skills of its volunteers to fulfill communities' basic human needs. We provide the services that meet these needs without consideration of race, religion, gender or political affiliation.

TRUSTED PARTNERSHIPS

Trust forms the foundation of EWB-USA partnerships, which are achieved through transparency, integrity and respect for the contributions and capabilities of all parties.

SUSTAINABLE SOLUTIONS

Sustainability drives EWB-USA's programs. We commit to community-driven projects. We equip our partner communities to maintain each project so it remains functional long after our commitment is

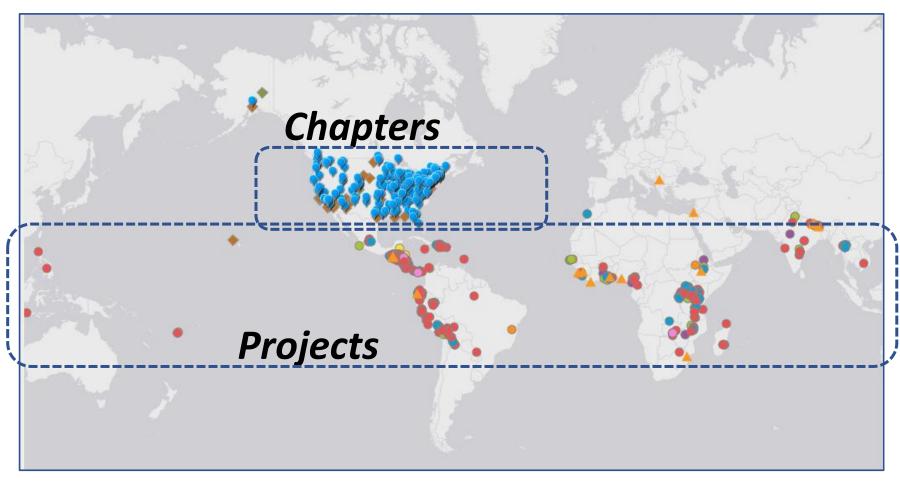
GROWTH & LEARNING

EWB-USA fosters an environment of learning so our volunteers, community members and staff have the tools, training and passion to address the world's most pressing challenges. We strive for our work to inspire others to learn more, do more, and become more.

CONDUCT & PRACTICES

EWB-USA holds paramount safety, security and ethical conduct. The volunteers and staff of EWB-USA are bound by the Member Code of Conduct and the engineers' Code of Ethics.

STRONGER TOGETHER

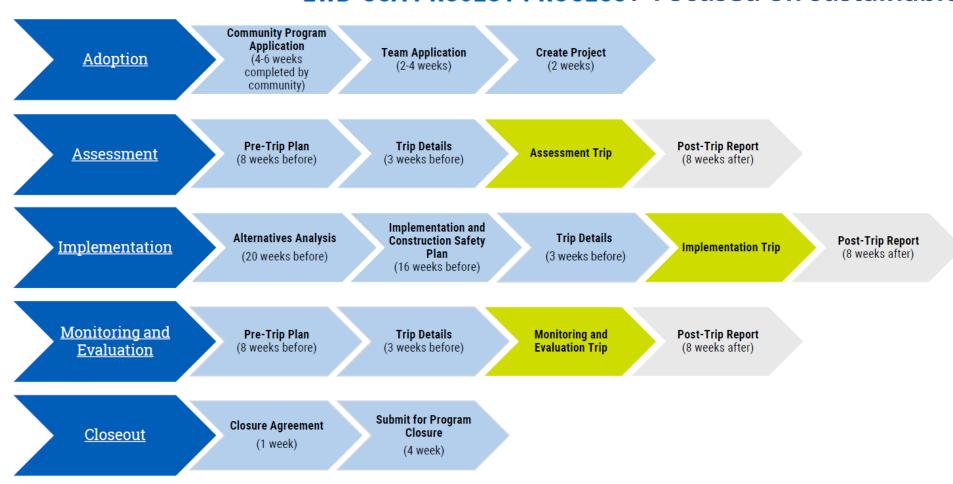

The EWB-USA family is comprised of community members, students, professionals, universities, headquarters staff and a host of other supporters. We thrive off diversity and the collaborative pathways it provides. But most importantly, we pursue EWB-USA's mission as one, with aligned goals and purpose.

For more info, please visit: https://www.ewb-usa.org/

EWB USA

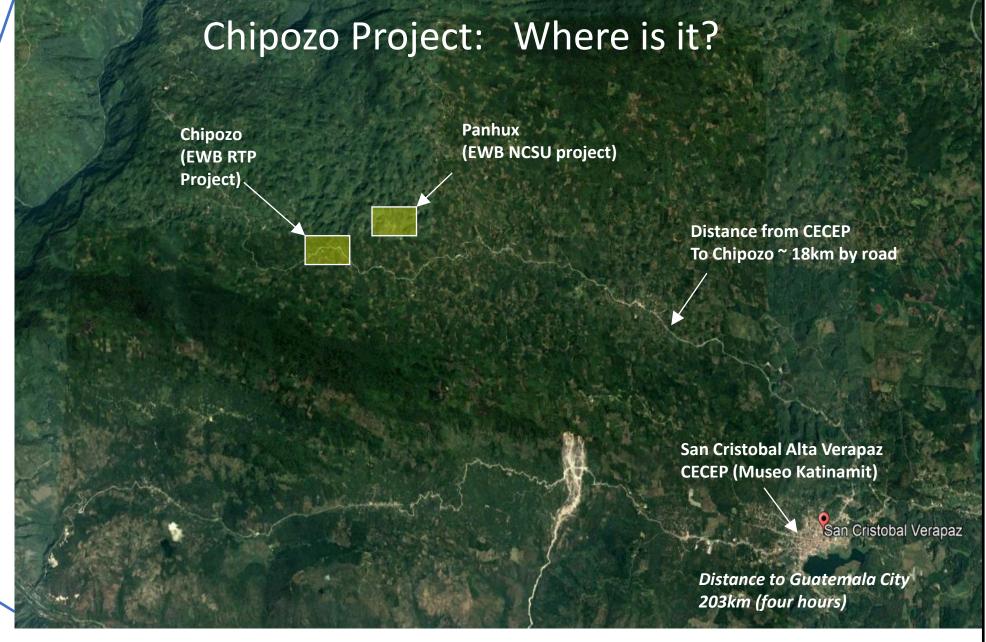
ENGINEERS WITHOUT BORDERS USA Research Triangle Professional Chapter

Building a Better World


Visit https://www.ewb-usa.org/our-work/where-we-work/
to learn more about the worldwide efforts of the EWB Professional and Student chapters

EWB USA

Building a Better World



EWB-USA PROJECT PROCESS: Focused on sustainable solutions

Chipozo Water
Supply Project Coordinates:
15.42085°,
-90.59399°

Engineers Without Borders Research Triangle Professional Chapter Project Name: Chipozo, Guatemala – Water Supply Improvement (Phase 1)

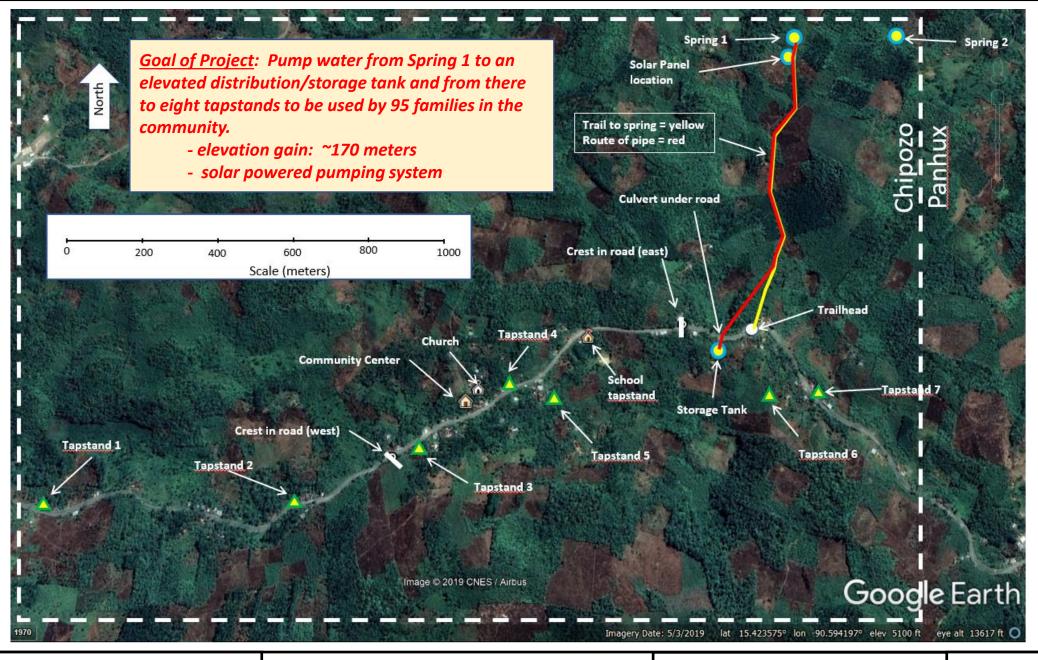
Drawing Name: General Location

Notes: Date: 24March2019

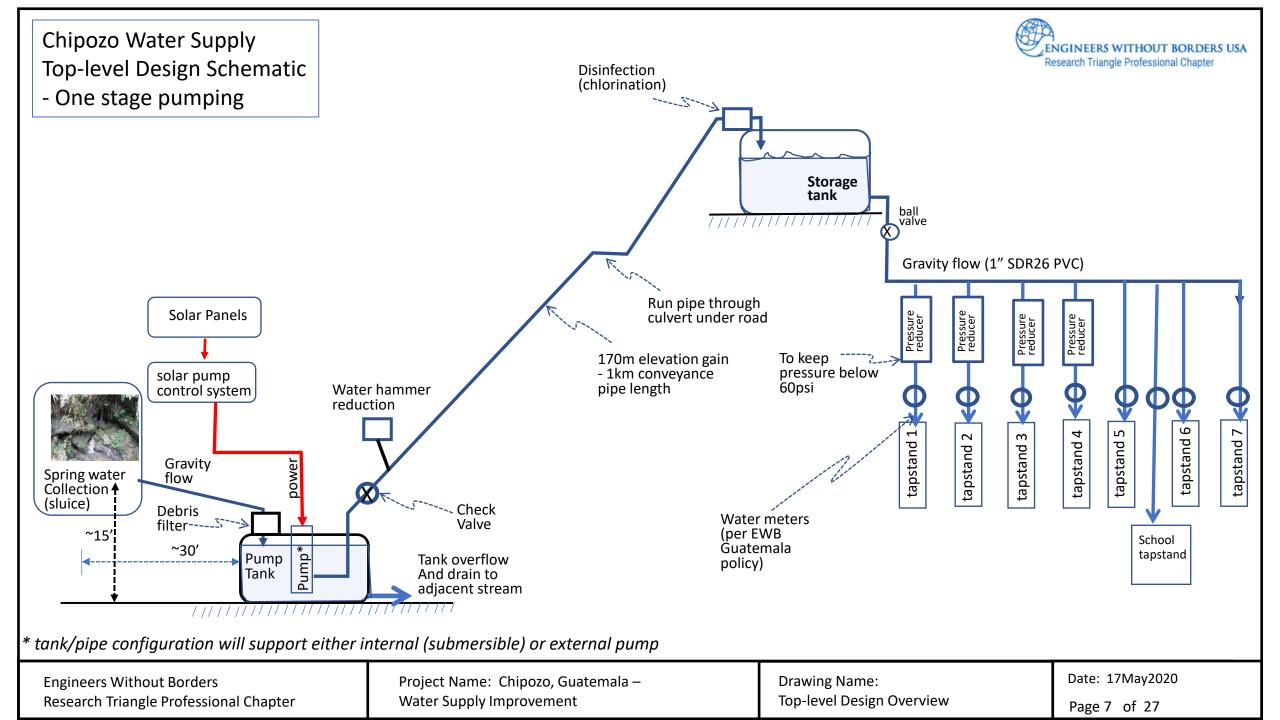
Page 2 of 10

Overview of the EWB RTP Water Supply Improvement Project in Chipozo Guatemala

- **Problem**: The 95 families in the Mayan (Pokomchi) village of Chipozo do not have a dependable clean water source
 - Current sources are largely unimproved springs which are not clean or are water catchment on houses which do not supply water in the dry season
- <u>Opportunity</u>: The community has identified a spring in a remote area which can support sufficient and clean water flow all year
 - But is a rugged and steep path of over 1km in distance and 150meters elevation change
- <u>Solution</u>: Build a <u>sustainable</u> solar-powered water distribution system from the spring to the community
- <u>Current Partners</u> in the project are:
 - Community-Based Organization (CBO): Chipozo COCODE
 - Non-Governmental Organization (NGO): CECEP (http://www.cecep.cosmosmaya.info/)
 - EWB Guatemala

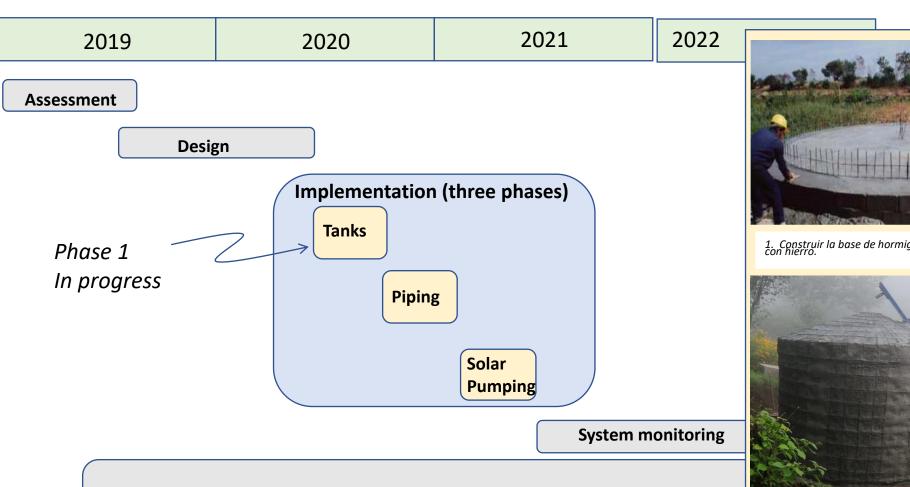


Typical unimproved springs


The people we want to help

Engineers Without Borders
Research Triangle Professional Chapter

Project Name: Chipozo, Guatemala – Water Supply Improvement Drawing Name: Plan View of Project


Date: 08May2020 Page 5 of 27

Chipozo Water Supply: Overall Project Schedule

Typical Tank **Construction Process**

Aplique yeso de cemento al marco para proporcionar la estructura estanca

Terminar el exterior y el interior del tanque.

Fundraising (never ends!)

Work Breakdown Structure, Cost Estimate and Project Implementation Responsibilities

WBS#	WBS Item	materials(S)	Labor(\$)	Total Cost (\$)
1	Pump subsystem			
1.1	Spring flow capture	180	150	300
1.1.1	sluice design			
1.2	Pipe from spring to pump tank	200	310	510
1.3	pump tank (concrete)	1100	800	1900
1.4	tank overflow to stream			
1.5	solar pump	5100	0	5100
1.5.1	solar pump vendor installation and testing		5000	5000
2	Solar Power subsystem			
2.1	solar panels	12000	300	12400
2.2	solar panel mounting structure	900	400	3200
2.3	power control unit	750	0	750
2.4	electric connection to pump			
2.4.1	cable	85	0	85
3	Elevated tank subsystem			
3.1	tank structure (concrete)	2800	1100	3100
3.2	sanitization	550	100	650
3.3	Elevated tank water level control system	160	50	210
4	Pila Subsystem (seven pilas)			
4.1	tapstands	120 each	40each	1120
4.2	wash stations (concrete)	400 each	350each	5250
4.3	water meters	15 each	0	105
4.4	roof structure	180 each	210each	2730
4.5	pila drain	30 each	20each	350
5	Conveyance subsystem (water distribution)			
	pipe from pump tank to elevated tank	7800	600	8400
5.1.1	pipe fittings	400	0	400
5.2	elevated tank to pilas	10000	500	10500
				62,060

Project Task	Responsibility	
Design system	EWB RTP	
Appove system design	community	
Fundraising	EWB RTP	
Prepare for Implementation		
Logistics of material purchasing	NGO (CECEP)	
Transport of materials to Chipozo	NGO (CECEP)	
Transport of materials to community sites	Community	
Prepare construction sites	Community	
Build Tanks and Piping		
Build Pump tank and storage tank	Mason (with help from community)	
Dig trenches and assemble piping between tanks	community	
Install/configure Solar Power subsystem		
solar panels		
Build solar panel mounting structure	EWB RTP, with help from community	
Install solar panels	EWB RTP	
install power control unit and pump	solar pump vendor	
Build Pila Subsystem and water distribution		
Connect water lines to storage tank	EWB (with help from community)	
Dig trenches and run water lines to pila locations	community	
construct concrete pilas and drain	Mason (with help from community)	
install water meters	EWB RTP	
Build roof structure	community	
Training and operations		
Prepare operations materials	EWB RTP	
Conduct Training	CECEP (with EWB)	
Operate and maintain system	Community	

A team effort with the community and NGO!

About CECEP (our NGO partner)-

http://www.cecep.cosmosmaya.info/menu 02.htm https://www.facebook.com/museo.katinamit

Centro Educativo Comunitario Pokomchí (CECEP) was founded in 1993 through the united efforts of local and international people with the objective of exposing and stregthening the Pokomchí culture.

For this purpose we work in translation (pokomchi-spanish), alphabetization, exhibition of our culture, promotion and distribution of Pokomchi literature and cultural strengthening. Furthermore we work with national and international associations supporting and reinforcing our community through our projects. We manage a community tourism alliance, educational workshops, volunteers, tours around the town, a store of handicrafts made by local artisans, and a school for the languages Spanish and Pokomchi.

With Museo Katinamit (opened in 2001) we offer the unique exhibition of Pokomchi culture, presenting our lifestyle which is considered among one of the oldest in the world and still living.

Chipozo Water Supply Improvement Project: Conclusion

- ENGINEERS WITHOUT BORDERS USA
 Research Triangle Professional Chapter
- <u>Summary</u>: The goal of this project is to improve the quality and quantity of the water supply for the Mayan community of Chipozo in Alta Verapaz Guatemala
- The EWB RTP team is partnered with the community as well as with local NGO CECEP to ensure the <u>long-range success of the project</u>
 - · Following the EWB USA engineering and project management discipline
 - Focusing on implementation of a sustainable and affordable design
 - Ensuing maintainability by the community

Next Steps:

- Continue the current implementation
- Fundraising (https://support.ewb-usa.org/waterforchipozo)

From this

EWB RTP: What we did during the April assessment trip

ENGINEERS WITHOUT BORDERS USA
Research Triangle Professional Chapter

- Met with the community to establish a common understanding of their needs and to identify the objectives to achieve during the trip
- Visited and surveyed all of the key proposed sites and routes associated with the water supply project (spring, tanks, pipe routes, and seven community water stations (pilas)
- Measured water flow of spring and conducted water quality tests
- Conducted house-to-house surveys of 82 out of 95 homes to baseline current water usage as well as health impacts of current water situation
- Met with candidate "abanil" (construction lead)
- Developed and signed the Community Partnership Agreement

